(fonte:wikipédia)
Formação e evolução estelar[editar]
Ver artigo principal: Evolução Estelar
A formação estelar ocorre em regiões densas de poeira e gás (hidrogênio basicamente). Quando desestabilizada, fragmentos da nuvem podem colapsar sob influência de gravidade e formar uma proto-estrela. Na medida em que a pressão se propaga pela nuvem, partes dela vão esquentando e se condensando, formando núcleos densos e de alta pressão. Quando a temperatura no núcleo atinge os 10 milhões de Kelvin, são disparados os processos de fusão nuclear, de hidrogênio em deutério e de deutério em hélio. Esses processos liberam energia e pressão suficiente para segurar o colapso gravitacional da nuvem em torno dos núcleos, formando o que chamamos de protoestrelas. A protoestrela já é considerada uma estrela, na fase de Sequência-Principal.
Quando o hidrogênio acaba, a estrela volta a colapsar pela gravidade, esmagando o núcleo e aumentando sua temperatura mais uma vez. Se a estrela possuir massa superior a meia massa solar, a temperatura no núcleo atinge os 100 milhões de Kelvin e o hélio formado passa a se fundir em carbono e a estrela expande suas camadas exteriores, aumentando expressivamente o raio da estrela. A estrela entra na fase de Gigante-Vermelha, que dura muito menos tempo que a fase de Sequência-Principal. Depois disso, quando o hélio acaba, o núcleo colapsa e ejeta suas camadas externas, que se tornarão uma nebulosa planetária enquanto o núcleo se torna uma anã branca de carbono. Anãs brancas são o que sobra de estrelas mortas, corpos de carbono com massa bem menor que a da estrela que a originou, massa essa incapaz de causar um colapso gravitacional. A radiação que ela emite é originada de sua própria temperatura, que irá cessar depois que a estrela esfriar e entrar em equilíbrio térmico com o ambiente.
Estrelas supermassivas (com massas superiores a 8 massas solares) são capazes de atingir os 300 milhões de Kelvin no núcleo e iniciar a fusão do carbono em oxigênio e neônio. A 1 bilhão de Kelvin, produzem silício, depois enxofre, argônio, cálcio, titânio e cromo. Depois, quando o núcleo atinge 4,5 bilhões de Kelvin, ele começa a produzir ferro. A fusão de ferro não libera mais energia, e sim absorve. Então, ao invés de impedir o colapso gravitacional, ele o acelera. A partir disso, em alguns milissegundos a estrela colapsa e a pressão sobe numa altíssima velocidade, ultrapassando até mesmo o limite das anãs brancas. A pressão e o choque destroem a estrela numa violenta supernova, que ejeta toda a matéria da estrela a velocidades altíssimas. Durante a supernova, a estrela consegue continuar fundindo elementos cada vez mais pesados, fundindo até o urânio e espalhando tudo pelo espaço na explosão. O núcleo super denso não se torna uma anã branca. Os elétrons que desabaram se fundem com os prótons e viram nêutrons, fazendo umaestrela de nêutrons, que possuem massa pouco maior que uma massa solar e raio de aproximadamente 20km. Caso a estrela de nêutrons tenha massa superior a 2,5 massas solares, então o colapso não cessa e a estrela continua se comprimindo até se tornar um buraco negro.(Ver semana de postagens Buracos Negros)
--->Representação de um buraco negro.
Nenhum comentário:
Postar um comentário